`\qquad\qquad\qquad 5_{10}3_{10}5;_{10}4_{10}9 = 535.49.`
Being explicit about the base, we can write
`\qquad\qquad\qquad 5_{10}3_{10}5;_{10}4_{10}9 = 535.49_{10}.`
Translating numbers in other bases into wiggle is an immediate generalization. As a first example, suppose we are trying to evaluate
`\qquad\qquad\qquad 10110111_{2}.`
We rewrite this, with the same digits---or bits---in the same order as the superdigits, and making each interbase be 2, so that
`\qquad\qquad\qquad 10110111_{2} = 1_{2}0_{2}1_{2}1_{2}0_{2}1_{2}1_{2}1.`
Telescoping from left, we get
`\qquad\qquad\qquad 1 xx 2 = 2,`
`\qquad\qquad\qquad 2 + 0 = 2,`
`\qquad\qquad\qquad 2 xx 2 = 4,`
`\qquad\qquad\qquad 4 + 1 = 5,`
`\qquad\qquad\qquad 5 xx 2 = 10,`
`\qquad\qquad\qquad 10 + 1 = 11,`
`\qquad\qquad\qquad 11 xx 2 = 22,`
`\qquad\qquad\qquad 22 + 0 = 22,`
`\qquad\qquad\qquad 22 xx 2 = 44,`
`\qquad\qquad\qquad 44 + 1 = 45,`
`\qquad\qquad\qquad 45 xx 2 = 90,`
`\qquad\qquad\qquad 90 + 1 = 91,`
`\qquad\qquad\qquad 91 xx 2 = 182,`
`\qquad\qquad\qquad 182 + 1; = 183;`
so that in the end
`\qquad\qquad\qquad 10110111_{2} = 183.`
Let's try one with a fractional part. What is
`\qquad\qquad\qquad 102.21_{3}?`
Rewriting in wiggle, we have
`\qquad\qquad\qquad 102.21_{3} = 1_{3}0_{3}2;_{3}2_{3}1.`
Telescoping from the left and the right, we get
`\qquad\qquad\qquad 1_{3}0_{3}2;_{3}2_{3}1 = (3 + 0)_{3}2;_{3}2_{3}1,` `\qquad\qquad\qquad\qquad = 3_{3}2;_{3}2_{3}1,`
`\qquad\qquad\qquad\qquad = (9 + 2);_{3}2_{3}1,`
`\qquad\qquad\qquad\qquad = 11;_{3}2_{3}1,`
`\qquad\qquad\qquad\qquad = 11;_{3}(2 + \frac{1}{3}),`
`\qquad\qquad\qquad\qquad = 11;_{3}\frac{7}{3},`
`\qquad\qquad\qquad\qquad = 11\frac{7}{9}.`
Odder bases are also easy to calculate with.
No comments:
Post a Comment