Saturday, January 23, 2010

...and wiggles decimal

Consider the following wiggle expression :

`\qquad\qquad\qquad 5_{10}3_{10}5;_{10}4_{10}9`

Telescoping from the left and right,

`\qquad\qquad\qquad 5 xx 10  =  50,`

`\qquad\qquad\qquad 50 + 3  =  53,`

`\qquad\qquad\qquad 53 xx 10  =  530,`

`\qquad\qquad\qquad 530 + 5;  =  535;`

and

`\qquad\qquad\qquad 9 -: 10 = \frac{9}{10}  (=  0.9),`

`\qquad\qquad\qquad \frac{9}{10} + 4  =   4\frac{9}{10}\qquad(=  0.9 + 4  =  4.9),`

`\qquad\qquad\qquad 4\frac{9}{10}  -: 10  =  \frac{49}{100}   =  4.9 -: 10  =  0.49,`


so that, adding, and using the decimal form of the fraction, we get

`\qquad\qquad\qquad 5_{10}3_{10}5;_{10}4_{10}9  =  535.49.`

The wiggle form on the left closely corresponds to the decimal form on the right.  The superdigits on the left are exactly the digits on the right.  The face value marker on the left corresponds to the decimal point on the right.  The interbases on the left are all explicitly `10`.  The number on the right is implicitly in our usual decimal or base ten notation.

No comments:

Post a Comment